
Recitation 1.2



Recitation 1.1 Feedback [Project 1 Beta help]

● Was Recitation 1.1 helpful? 

● Any improvements to suggest?



Recitation 1.2

● A very short introduction to what is available for Project 1 Final 

● After that, you are free to work on HW3 or get started on Project 1 Final

● Rest of the class I’ll be going around asking if I could help with anything that 

has happened so far in the course



Project 1 Beta



Vectorization



Basic Vector Instructions

● Vector Register Sizes: xmm: 128, ymm: 256, zmm: 512 bits

● Packing: Fit many values in one register
○ xmm fits 2x uint64_t, 4x int32_t, 4x float, etc… (in general = (128/8) / sizeof(T))

● Packed Arithmetic Operations
○ add, subtract, multiply, divide, reciprocate, max, min, sqrt, reciprocal of sqrt

● Packed Comparison Operations

● Packed Logical Operations

● Packed Type Conversions
○ int to float etc



Overlapping Memory Regions

● Difference between memcpy and memmove

● When A[] and B[] overlap, memcpy(B, A, n) can be wrong
○ because the memcpy can overwrite data from the source, which it would need to use later

● Same thing can happen with vector operations

● To vectorize codes that deal with two arrays, need to know they don’t overlap

● We can mark this using the restrict keyword

● int* restrict A, int* restrict B

○ The only way to obtain pointers from A’s memory region is by offsetting from A

○ Thus A and B cannot overlap because there are no (non UB) offsets into each other



What can a compiler auto-vectorize?

● “Pure” (not interdependent) loop iterations
○ Dependence between loop iterations, e.g. prefix sum

● Reductions
○ Sum or product of contiguous memory: can detect the result variable is used for reduction

● Inductions
○ A[i] = i;

● If Statements
○ Certain if statements can be converted to branchless code

● Stride
○ A[i] += B[i * 4];

● When restrict is not known
○ Generates both vector and scalar code paths

○ Tests for overlap at runtime

https://llvm.org/docs/Vectorizers.html

https://llvm.org/docs/Vectorizers.html


Associativity of Reductions

● 1 + (2 + 3) == (1 + 2) + 3

● 0.1 + (0.2 + 0.3) != (0.1 + 0.2) + 0.3

● Floating point addition is not associative. This means order matters.

● -O3 has to produce code that behaves exactly the same as -O0

● Vector operations do not add the values in the same order as a scalar loop.

● For float: Need the -ffast-math flag to tell the compiler we’re ok with this.

Good Reading:

“What Every Computer Scientist Should Know About Floating-Point Arithmetic”

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html






Useful Intrinsics



Alignment Hint

void *__builtin_assume_aligned(const void *arg, size_t align);

Returns its first argument and allows the compiler to assume that the returned 

pointer is at least align bytes aligned.

// x is at least 16 byte aligned

void *x = __builtin_assume_aligned(arg, 16);

// (char *) x - 8 is 32 byte aligned

void *x = __builtin_assume_aligned(arg, 32, 8);



Other Bit Manipulations

● uint64_t __builtin_rotateleft64(uint64_t x, bits_t amt);

● uint64_t __builtin_rotateright64(uint64_t x, bits_t amt);

● uint64_t __builtin_bitreverse64(uint64_t x);

● uint64_t __builtin_bswap64(uint64_t x);

● bits_t __builtin_popcountll(uint64_t x);

● bits_t __builtin_clzll(uint64_t x);

● bits_t __builtin_ctzll(uint64_t x);



Parallel Bit Extraction

#include <immintrin.h>

uint64_t _pext_u64(uint64_t s1, uint64_t mask);

Transfer either contiguous or non-contiguous bits in the first source operand to 

contiguous low order bit positions in the destination according to the mask values.



Packed Shift

#include <immintrin.h>

__m128i _mm_sll_epi64(__m128i reg, __m128i count);

Shift the two 64 bit numbers packed in reg left by count.



Pre Fetching!

__builtin_prefetch (const void *addr[, rw[, locality]])

Takes:

● Addr to prefetch from

● Read mode or write mode

● Locality (L1 /L2/ L3/ auto)



Intel Intrinsics Guide
https://software.intel.com/sites/landingpage/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide

	Slide 1: Recitation 1.2
	Slide 2: Recitation 1.1 Feedback [Project 1 Beta help]
	Slide 3: Recitation 1.2
	Slide 4: Project 1 Beta
	Slide 5: Vectorization
	Slide 6: Basic Vector Instructions
	Slide 7: Overlapping Memory Regions
	Slide 8: What can a compiler auto-vectorize?
	Slide 9: Associativity of Reductions
	Slide 10
	Slide 11
	Slide 12: Useful Intrinsics
	Slide 13: Alignment Hint
	Slide 14: Other Bit Manipulations
	Slide 15: Parallel Bit Extraction
	Slide 16: Packed Shift
	Slide 17: Pre Fetching! 
	Slide 18: Intel Intrinsics Guide https://software.intel.com/sites/landingpage/IntrinsicsGuide

