Recitation 1.2

Recitation 1.1 Feedback [Project 1 Beta help]

e \Was Recitation 1.1 helpful?
e Any improvements to suggest?

Recitation 1.2

e A very short introduction to what is available for Project 1 Final

e After that, you are free to work on HW3 or get started on Project 1 Final

e Rest of the class I'll be going around asking if | could help with anything that
has happened so far in the course

Project 1 Beta

Telerun Tiers
4

Teams

0
13.00 18.00 23.00 28.00 33.00 37.00 37.00

Vectorization

Basic Vector Instructions

e Vector Register Sizes: xmm: 128, ymm: 256, zmm+5312 bits
e Packing: Fit many values in one register
o xmm fits 2x uint64_t, 4x int32_t, 4x float, etc... (in general = (128/8) / sizeof (T))
e Packed Arithmetic Operations
o add, subtract, multiply, divide, reciprocate, max, min, sqrt, reciprocal of sqrt
e Packed Comparison Operations
Packed Logical Operations

Packed Type Conversions
o Intto float etc

Overlapping Memory Regions

e Difference between memcpy and memmove

When A[] and B[] overlap, memcpy (B, A, n) can be wrong
o because the memcpy can overwrite data from the source, which it would need to use later

Same thing can happen with vector operations
To vectorize codes that deal with two arrays, need to know they don'’t overlap
We can mark this using the restrict keyword

int* restrict A, int* restrict B

o The only way to obtain pointers from A’'s memory region is by offsetting from A
o Thus A and B cannot overlap because there are no (non UB) offsets into each other

What can a compiler auto-vectorize?

e “Pure” (not interdependent) loop iterations

o Dependence between loop iterations, e.g. prefix sum
e Reductions

o Sum or product of contiguous memory: can detect the result variable is used for reduction
e Inductions

o A[i] = 1i;
e If Statements

o Certain if statements can be converted to branchless code
e Stride

o A[i] 4= B[i * 4];
e \When restrict is not known

o Generates both vector and scalar code paths
o Tests for overlap at runtime

https://llvm.org/docs/Vectorizers.html

https://llvm.org/docs/Vectorizers.html

Associativity of Reductions

(2 + 3) == (1 + 2) + 3
+ (0.2 + 0.3) !'= (0.1 + 0.2) + 0.3

Floating point addition is not associative. This means order matters.

-O3 has to produce code that behaves exactly the same as -O0

Vector operations do not add the values in the same order as a scalar loop.
For float: Need the -ffast-math flag to tell the compiler we're ok with this.

Good Reading:
“What Every Computer Scientist Should Know About Floating-Point Arithmetic”

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Ben Bitdiddle wants to optimize the following piece of working code:

/* The elements of A and B are known to be nonnegative and not
aliased */
/* k is known only at runtime */
static const int N = (1 << 30);
for (int i = 0; 1 < N; i++) {
Ali] = k * B[i];
}

Using what he learned in this class, he rewrites the code as:

/* The elements of A and B are known to be nonnegative and not
aliased */
/* k is known only at runtime x*/
static const int N = (1 << 30);
AN - 1] = -1;
int *a = A , *b = B;
while (¥a >= 0) {
*(a++) = k *x *(b++) ;
}

*a = k x xb;

Ben compiles both codes with GCC using optimization —-03. When he runs the
two codes, however, Ben finds that his new code is several times slower than his
old code because it no longer vectorizes. Why does it fail to vectorize?

Given a matrix M in row-major format, we wish to compute the row sums (i.e.,
the sums across the rows).

1 #define ROWS 2048

2 #define COLS 3072

3

4 void compute_row_sums(int M[ROWS] [COLS], int row_sums[ROWS]) A
5 for (int i = 0; 1 < ROWS; i++) {
6 row_sums[i] = 0;

7 for (int j = 0; j < COLS; j++) {
8 row_sums[i] += M[i] [j];

9 +

10 }

11 }

Can the code in compute_row_sums () be transformed to use vector hardware ef-
fectively? If yes, explain briefly where and how to vectorize compute_row_sums().
If no, explain briefly why the function cannot be vectorized.

Useful Intrinsics

Alignment Hint

void * builtin assume aligned(const void *arg, size t align);

Returns its first argument and allows the compiler to assume that the returned
pointer is at least align bytes aligned.

// x 1s at least 16 byte aligned

void *x = builtin assume aligned(arg, 16);

// (char *) x - 8 is 32 byte aligned

void *x = builtin assume aligned(arg, 32, 8);

Other Bit Manipulations

uint64 t builtin rotateleft64 (uint64 t x, bits t amt);
uint64 t builltin rotateright64 (uinto64 t x, bits t amt);
uint64 t builltin bitreverse64 (uint64 t x);

uint64 t builltin bswapo64 (uint6d t x);

bits t builtin popcountll (uintod t x);

bits t builtin clzll(uint6d4 t x);

bits t builtin ctzll(uintod t x);

Parallel Bit Extraction

#include <immintrin.h>
uint64 t pext u64(uinto64 t sl, uinto64 t mask);

Transfer either contiguous or non-contiguous bits in the first source operand to
contiguous low order bit positions in the destination according to the mask values.

SRULS31S30] S29.528[S27] - — — - [ST[S6]S5 [S4] S3[S7 S1] S0
A0 O[O [0]-==-[[0 JO[0]I]0]0

DEST 01070 [0]-=—=~-L0[0 | O[O0 |S28/ST7 [SH]02

Packed Shift

#include <immintrin.h>
ml281i mm sll epi6d4(ml281 reg, = ml281 count);

Shift the two 64 bit numbers packed in reg left by count.

Pre Fetching!

__builtin prefetch (const void *addr[, rw[, locality]])
Takes:

® Addr to prefetch from

® Read mode or write mode

¢ Iocality (L1 /L2/ L3/ auto)

Intel Intrinsics Guide

https://software.intel.com/sites/landingpaqge/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide

	Slide 1: Recitation 1.2
	Slide 2: Recitation 1.1 Feedback [Project 1 Beta help]
	Slide 3: Recitation 1.2
	Slide 4: Project 1 Beta
	Slide 5: Vectorization
	Slide 6: Basic Vector Instructions
	Slide 7: Overlapping Memory Regions
	Slide 8: What can a compiler auto-vectorize?
	Slide 9: Associativity of Reductions
	Slide 10
	Slide 11
	Slide 12: Useful Intrinsics
	Slide 13: Alignment Hint
	Slide 14: Other Bit Manipulations
	Slide 15: Parallel Bit Extraction
	Slide 16: Packed Shift
	Slide 17: Pre Fetching!
	Slide 18: Intel Intrinsics Guide https://software.intel.com/sites/landingpage/IntrinsicsGuide

